

Natural or Counting Numbers

Ellipsis

Scientific Method

Hypothesis or Conjecture

Natural or Counting Numbers 1, 2, 3, 4, 5... positive whole numbers Ellipsis

Scientific Method

Hypothesis or Conjecture

Natural or Counting Numbers

1, 2, 3, 4, 5... positive whole numbers

Ellipsis

three dots indicating a continuation of the pattern Scientific Method

Hypothesis or Conjecture

Natural or Counting Numbers

1, 2, 3, 4, 5... positive whole numbers

Ellipsis

three dots indicating a continuation of the pattern

Scientific Method

the process for proving (or disproving) a hypothesis after observations of specific cases

Hypothesis or Conjecture

Natural or Counting Numbers

1, 2, 3, 4, 5... positive whole numbers

Ellipsis

three dots indicating a continuation of the pattern

Scientific Method

the process for proving (or disproving) a hypothesis after observations of specific cases

Hypothesis or Conjecture

a prediction based on specific observations

Natural or Counting Numbers

1, 2, 3, 4, 5... positive whole numbers

Ellipsis

three dots indicating a continuation of the pattern

Scientific Method

the process for proving (or disproving) a hypothesis after observations of specific cases

Hypothesis or Conjecture

a prediction based on specific observations

Counterexample

a specific example that proves that the conjecture is false

Natural or Counting Numbers

1, 2, 3, 4, 5... positive whole numbers

Ellipsis

three dots indicating a continuation of the pattern

Scientific Method

the process for proving (or disproving) a hypothesis after observations of specific cases

Hypothesis or Conjecture

a prediction based on specific observations

Counterexample

a specific example that proves that the conjecture is false

Rules about counterexamples:

It takes only one to disprove a conjecture
Not finding one neither proves or
disproves a conjecture

Inductive Reasoning is the process of reasoning to a general conclusion through observations of specific cases.

Inductive Reasoning is the process of reasoning to a general conclusion through observations of specific cases.

Deductive Reasoning is the process of reasoning to a specific conclusion from a general statement

Inductive Reasoning is the process of reasoning to a general conclusion through observations of specific cases.

Deductive Reasoning is the process of reasoning to a specific conclusion from a general statement

The Process:

Observe a trend
Make a general conclusion based on the trend (IR)
Make a hypothesis to prove
Look for a counterexample
If you can't find a counterexample make a proof (DR)
If your proof holds up, then you have proven your hypothesis

When will you use inductive reasoning?	
When will you use deductive reasoning?	

Example 1: The product of two odd numbers Will the product of two odd numbers always be odd? Odd #1: 20 -Odd = 2:2m - 1 (2n-1)(2m-1) 4nm - 2n - 2m +1 2(something) = 1 2(2nm-n-m)+

Example 2: The sum of an odd and an even number

If an odd number and an even number are added, will the sum be an odd or an even number?

Example 3: Divisibility
If the last two digits of a number are divisible by seven will the number thenbe divisible by seven?

714

549

Example 4: Prove or Disprove

a) The difference of any two counting numbers will be a counting number.

(0-20=-10)

b) The product of any two counting numbers will be a counting number.

Yes

Example 6: Pick a number n.

Prove the conjecture from Example 5.

Pick any number, multiply the number by 4, add 6 to the product, divide the sum by 2, and subtract 3 from the quotient.

$$\frac{4x+6}{2} = 2x+3-3$$

$$= \sqrt{\chi} \sqrt{\chi}$$

IN YOUR HOMEWORK -

Pay close attention to #39 - 42!!!