1.1 - Inductive Reasoning
Vocabulary

- Natural or Counting Numbers
- Ellipsis
- Scientific Method
- Hypothesis or Conjecture
- Counterexample
Vocabulary

Natural or Counting Numbers
1, 2, 3, 4, 5... positive whole numbers

Ellipsis

Scientific Method

Hypothesis or Conjecture

Counterexample
Vocabulary

Natural or Counting Numbers
1, 2, 3, 4, 5... positive whole numbers

Ellipsis
three dots indicating a continuation of the pattern

Scientific Method

Hypothesis or Conjecture

Counterexample
Vocabulary

Natural or Counting Numbers
1, 2, 3, 4, 5... positive whole numbers

Ellipsis
three dots indicating a continuation of the pattern

Scientific Method
the process for proving (or disproving) a hypothesis
after observations of specific cases

Hypothesis or Conjecture

Counterexample
Vocabulary

Natural or Counting Numbers
1, 2, 3, 4, 5... positive whole numbers

Ellipsis
three dots indicating a continuation of the pattern

Scientific Method
the process for proving (or disproving) a hypothesis after observations of specific cases

Hypothesis or Conjecture
a prediction based on specific observations

Counterexample
Vocabulary

Natural or Counting Numbers
1, 2, 3, 4, 5... positive whole numbers

Ellipsis
three dots indicating a continuation of the pattern

Scientific Method
the process for proving (or disproving) a hypothesis after observations of specific cases

Hypothesis or Conjecture
a prediction based on specific observations

Counterexample
a specific example that proves that the conjecture is false
Vocabulary

Natural or Counting Numbers
1, 2, 3, 4, 5... positive whole numbers

Ellipsis
three dots indicating a continuation of the pattern

Scientific Method
the process for proving (or disproving) a hypothesis
after observations of specific cases

Hypothesis or Conjecture
a prediction based on specific observations

Counterexample
a specific example that proves that the conjecture is false

Rules about counterexamples:
It takes only one to disprove a conjecture
Not finding one neither proves or disproves a conjecture
Inductive vs. Deductive Reasoning
Inductive vs. Deductive Reasoning

Inductive Reasoning is the process of reasoning to a general conclusion through observations of specific cases.
Inductive vs. Deductive Reasoning

Inductive Reasoning is the process of reasoning to a general conclusion through observations of specific cases.

Deductive Reasoning is the process of reasoning to a specific conclusion from a general statement.
Inductive vs. Deductive Reasoning

Inductive Reasoning is the process of reasoning to a general conclusion through observations of specific cases.

Deductive Reasoning is the process of reasoning to a specific conclusion from a general statement

The Process:
 - Observe a trend
 - Make a general conclusion based on the trend (IR)
 - Make a hypothesis to prove
 - Look for a counterexample
 - If you can't find a counterexample make a proof (DR)
 - If your proof holds up, then you have proven your hypothesis
When will you use inductive reasoning?

When will you use deductive reasoning?
General Notation for Proofs:

Odd numbers: \((2n - 1)\)

Even numbers: \((2n)\)

**Use \(n\) for the first odd or even number, then \(m\), then \(p\), etc.
**Always try to get your final number in the form of an odd or even number
Example 1: The product of two odd numbers
Will the product of two odd numbers always be odd?

\[\text{Odd } \neq 1 : 2n - 1\]
\[\text{Odd } \neq 2 : 2m - 1\]

\[(2n-1)(2m-1)\]

\[4nm - 2an - 2am + 1\]

\[2(something) \neq 1\]
\[2(2nm - n - m) + 1\]
Example 2: The sum of an odd and an even number
If an odd number and an even number are added, will the sum be an odd or an even number?

\[2n + 2m + 1 \]

\[= 2(n + m) + 1 \]
Example 3: Divisibility

If the last two digits of a number are divisible by seven will the number then be divisible by seven?

\[
\begin{array}{c}
714 \\
\hline
549
\end{array}
\]
Example 4: Prove or Disprove

a) The difference of any two counting numbers will be a counting number.

\[10 - 20 = -10 \]

b) The product of any two counting numbers will be a counting number.

Yes
Example 5: Pick a number n.
Pick any number, multiply the number by 4, add 6 to the product, divide the sum by 2, and subtract 3 from the quotient. What can we conclude?

$n = 127$

\[
\frac{127 \times 4}{508} + \frac{6}{514} \div a = \frac{257}{254} - \frac{3}{254}
\]
Example 6: Pick a number \(n \).
Prove the conjecture from Example 5.

Pick any number, multiply the number by 4, add 6 to the product, divide the sum by 2, and subtract 3 from the quotient.

\[
\frac{4n + 6}{2} = 2n + 3 - 3 = 2n \checkmark
\]
IN YOUR HOMEWORK -

Pay close attention to #39 - 42!!!